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Results of an experimental and theoretical analysis of Kol'skii's method for dynamic tests of 
soft soils in an elastic casing are presented. The model proposed by S. S. Grigoryan for a plas- 
tically compressible medium with parameters determined in shock-wave experiments was used 
as the model of a soft soil. The high-rate deformation of the soil was simulated using a mod- 
ified "Dynamics-2" program package. The numerical calculations performed showed that the 
compliance of the casing and friction practically do not influence the measured characteristics 
of thc soil and the basic premises of KoI'skii "s method are adequate for soft soils too. 

The behavior of soils under intense dynamic loading is of interest in deriving equations of state, 
analyzing wave processes in soils, and developing numerical methods for calculating the interaction of land- 
based and underground structures with soils during strong earthquakes, explosions, and shocks. 

The dynamic properties of soils at strain rates of up to 102 sec -1 have been studied in detail. For 
higher rates, these properties have been studied inadequately because of the lack of elaborate and well-founded 
methods for dynamic tests of soils. An effective experimental method for studying the dynamic properties 
of materials is KoFskii's method [1]. Bragov et al. [2, 3] proposed a modification of Kol'skii's method that 
allows one to perform dynamic tests of soils and other loose low-density materials in an elastic casing, to 
plot strain diagrams, and to determine the lateral-pressure coefficient I(a. In the papers cited, the feasibility 
of the basic premises of this method was studied. The present paper is devoted to a numerical analysis of 
the applicability of this method for testing soils at high strain rates. The dynamic deformation of soils is 
analyzed using Grigoryan's model of a plastic compressible medium [4]. The validity of the basic premises of 
Kol'skii's method (uniform stress state in a sample, effects of friction forces and deformability of the casing 
on wave processes in the system) is assessed from the viewpoint of obtaining reliable characteristics of bulk 
and shear deformation of soils. 

Fo rmula t ion  of  t he  P rob lem.  Mathematical simulation of the high-rate deformation of soft soils in a 
confining casing is performed in an axisymmetric formulation (Fig. 1), which corresponds to the experimental 
conditions of [3]. The soil sample 7 is placed in the steel casing 4 between the ends of the loading 8 and 
reference 6 measurement rods. The steel impactor 1 accelerated in the gas gun barrel impacts the first rod 
8 with velocity V0 and excites in it a plane, one-dimensional, elastic compression wave. Having reached the 
sample, this wave deforms it. Thus, the wave is partly reflected into the rod 8 as an extension wave and 
partly propagates in the form of a compression wave through the sample into the reference rod 6. The strain 
gauge 2 located in the middle of the lateral surface of the loading rod records the longitudinal deformation 
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pulse during passage of the waves transmitted and reflected from the sample, and the strain gauge 5 located 
in the middle of the reference rod records the deformation pulse transmitted through the sample. The shape 
of the pulse reflected from the sample characterizes the variation in the strain rate, and integration of the 
pulse shape yields the development of the deformation of the sample with time. The shape of the pulse 
transmitted through the sample characterizes the variation in the longitudinal strain component. The strain 
gauge 3 located on the external surface of the casing records the hoop strain required to determine the lateral 
pressure of the soil and resistance to shear. 

The shock-wave deformation of the system (Fig. 1) is described using a variational-difference procedure 
[5] based on the dynamic relations for elastoplastic media. The initial system of equations is written in 
cylindrical coordinates rOz, where the symmetry axis Oz coincides with the rotation axes of the rods and 
the axis Or (r >~ 0) is perpendicular to it along the boundary of contact of the first rod with the soil. The 
variational equation of motion in Lagrangian variables is written in Gurtin's form using the principle of 
possible motions: 

f (O'rrh~rr -~ O'O0~eO0 -~- O'zz(~zz + 2arzh~rz)r dl2 
fl 

J 

G 
Here aij are the stress-tensor components (i, j = r, z, 0), p~, and qa are components of the surface load and 
the contact pressure (a = r, z), and p is the density; the dots denote differentiation with respect to time. 
The relationship between the strain-rate tensor and the rate of displacement is derived in the metrics of the 
current state. Hence, changing the geometry (r and z coordinates) step by step, it is possible to describe 
large displacements: 

err =/tr,  r, ezz =- itz,z, 600 =-/tr/r, er: = 0.5(/tz,r + ur,z), (1) 

where the subscript after the comma denotes differentiation with respect to the corresponding variable. Values 
of the strain-tensor components are determined by integrating the corresponding components of the strain- 
rate tensor in (1) with respect to time. The relationship between the stress- and strain-tensor components in 
the elastic rods and the casing is given by Hooke's law. 

In the description of the dynamic deformation of the plastically compressible soil, the strain tensor is 
represented as a superposition of the spherical tensor and the deviator. The spherical stress tensor (pressure) 
is related to the volumetric strain (density) by the nonlinear law 

11(P), dp/dt > O, 

P = f2(P,P*), dp/dt <. O. (2) 

The first equation in (2) describes the compression curve (shock adiabat) on the active loading segment, and 
the second equation defines the rarefaction curves from the maximum density attained p*. The corresponding 
maximum pressure that is reached in the process of shock-compression loading of the particle considered is 
determined from the shock-adiabatic equation p* = fl  (P*). If after loading to p*, the pressure in the particle 
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decreases (rarefaction process), the relation between the pressure and the density is described by the second 
equat ion in (2). If the pressure increases again (additional loading), not exceeding p*, the relation between 

the pressure and the density is also described by the second equation of (2). Thus,  for the particle considered, 

the pa ramete r s  p* and p* can only increase and only under irreversible volumetric strain; they do not vary 

with elastic changes in the volume. 
The  shear strains in the soil are described by the plastic flow equations [6]. The  components  of 

- ~.e. ~P where ~e and ~P the s t ra in-ra te  deviator tensor are defined by s  = ~z 3 -}-~ij' *~j ~ij are the elastic and plastic 
strains, respectively. The  deviator components  of the elastic-strain tensor are related to the stress-deviator 

~.e. where G is the shear modulus. The  plastic strains are determined components  by Hooke's  law 8 i j  = 2G- u ,  

by the associated law of plastic flow ~ j  = ~ s i j  and the Mises flow condition 

J2 = susiJ /2 = a~(p)/3,  (3) 

where ay is the yield strength,  which generally depends on the pressure p and A is a scalar factor tha t  is 
proport ional  to the ra te  of increase in the plastic-strain work or is equal to zero for elastic deformation [6]. 

On the surfaces of contact of the rods and the casing with the soil, we impose conditions of nonpene- 
t ra t ion along the normal  and slip with Coulomb friction in the tangential direction. On the free surfaces of 

the rods and the casings, stresses are absent. At the impacted end of the rod 8 (Fig. 1), the experimental  
relation a = ( t )  is specified. At the initial t ime (t = 0), the system is at rest and the stresses and strains are 

equal to zero. 
M e t h o d  o f  S o l u t i o n  a n d  C a l c u l a t i o n  R e s u l t s .  The nonlinear wave problem formulated above is 

solved by an explicit, variational-difference, "c ross ' - type  scheme of the second order of accuracy [5] using the 

application program package "Dynamics-2" [7]. The  rates  of displacement and the coordinates of the nodes 

in the discrete model are determined from the recursive relations 

: k+l /2  - k - l ~ 2  z21/-k+l/2 Ozk+l ok  �9 k+l /2  k+l  Z), = ~ ,  = + .% At (a  = r, , ~  u.  + (F. + Q~) F., 

where Fa and Frn are the generalized nodal forces and mass, Qa are the contact  forces, and A t  k+l is a t ime 
step tha t  is close to the Courant  number  equal to unity relative to the minimum celt size [7]. 

The  units of the experimental  setup had the following dimensions: the impactor  was 150 m m  long 
and 20 m m  in diameter ,  the measurement  rods were 1000 m m  long and 20 m m  in diameter,  the casing had 

an outside diameter  of 42 mm,  an inside diameter  of 20 m, and a length of 15 mm,  and the length of the 
cylindrical soil sample was 9 m m  and its diameter  was 20 mm. Calculations were performed for the following 

mechanical  parameters  of the rod materials: Young's modulus E = 185 GPa,  Poisson's constant L, = 0.3, 
and density p = 7.87 g/cm3; for the casing, respectively, E = 200 GPa,  u = 0.3, and p = 7.8 g/era  3. The 

impact  velocity was V0 = 25 m/see.  The initial density of the soil (sand with a moisture content of 11%) was 

P0 = 1.71 g / c m  3. The  shock-adiabatic equation in (2) was defined as [8] 

f l  (p) = M e  n, 
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where ~ = 1 -Po/P is the volumetric strain, p is the current density, M = 2.1 GPa, and n = 1.9. This relation 
(solid curve in Fig. 2) approximates the experimental  relation p = az:(p) (points in Fig. 2). The  function 
f2(P, P*) in (2) is defined as a two-segment broken line [9]: 

p* + C (p - p*), p > poo, 

P= P*+C2(p-P*) ,  P < P00. 
(4) 

Here C1 and C2 are the speeds of sound, which determine the slopes to the p axis for the first and second 
links of the broken line (4), respectively, P00 = P*/'Tp characterizes the ratio of the lengths of the links of the 
broken line, (P00, P00) is the point of inflection on the rarefaction curve in the (p, p) coordinates. The speeds 
of sound C1 and C2 as functions of p* are defined by 

p * -  ( 1 - % p * -  ) .  
c1 = Co + p0 ( c  9 _ Co),  c 2  = c1  1 + p0 (5) 

P9 PO % Pg PO 
The parameter  7c specifies the ratio of C1 to C2 for p* = pg, where P9 is the density at which the material 
becomes similar in properties to a liquid. At the point (P9, Pg), the slope of the first link of the broken line 
(4) coincides with the slope of the tangent to the shock adiabat in (2). Thus, we have specified the linear 
variation in C1 from Co to Cg and the linear variation in C2 from Co to Cx/7c with variation in the density 
p* from P0 to Pg" Here Co is the speed of sound in the soil in the absence of disturbances (or at p = P0). In 
the calculations, we set 3'p = 3, 7c = 3, Co = 30 m/see,  and P9 = 2.5 g/era 3. The relation (Zy(p) in the yield 
condition (3) is a nondecreasing function of pressure and is determined from experimental da ta  as follows: 

#P 
ay(p) = Y0 + 1 + #p/(Y. - Yo)" (6) 

Here Yo, it, and Y. are the cohesion, the internal-friction coefficient, and the maximum plastic limit, which 
are equal, respectively, to 0.1, 0.8, and 5.0 MPa. The  shear modulus is G = 5 MPa and the coefficient of 
friction of the soil against the surface of the casing is equal to 0.3 [10]. 

For the measurement rods, we use a grid with 5 cells along the radius and 500 cells along the length. 
The  soil sample is divided into 10 cells along the line of contact with the rods and 9 cells along the line of 
contact with the casing. The grid of the easing consists of 20 x 15 cells. 

Let us describe briefly the wave processes occurring in the system "impactor-rod 8-soil sample-casing- 
rod 6 (see Fig. 1). At the moment of impact, an almost one-dimensional compression pulse with a duration of 
about  70 #see is formed in the measurement rod. Propagat ing in tile loading rod practically without  changes 
up to the line of contact with the soil sample, this pulse passes in part  into the soil and is par t ly  reflected, 
forming a reflected tension pulse, which is recorded by the gauge 2. Because of the small acoustic rigidity of 
the soil sample, compared to the acoustic rigidity of the measurement rod, the compression pulse is reflected 
from the soil as from a free surface, i.e., the pulse is inverted. The pulse t ransmit ted into the soil propagates 
until interaction with the end of the second measurement rod. The pulse is then reflected from the end and its 
amplitude increases by a factor of not less than two, which is determined by the nonlinearity of the diagram 
in the present stress range. 

The  compression pulse propagates into the rod 6 (see Fig. 1), forming a first local maximum, recorded 
in the experiment by the gauge 5, and then into the soil sample until reflection from the end of the first rod, 
where the shock-compression pulse continues to act. The  pulse reflected for the second time and having an 
increased amplitude passes through "soil-rod" interface 6, forming a second maximum. The durat ion of the 
compression pulse propagating along the first rod is selected so that  after the pulse is reflected for the second 
time from the sample of soil and approaches the end of the second rod, it is caught up by the rarefaction 
wave, which propagates with higher velocity and reduces in part  the maximum stress in the rod 6. Stresses 
in the casing arise under the action of the ar t  component  of the stress tensor in the soil and the shearing 

stress ar~ and are recorded by the gauge 3. 
In the absence of friction, the stress-strain state of the soil sample cross section is ra ther  uniform. 

Figure 3 gives curves of azz(t) in the soil sample at the points z = 0 (solid curve), z = 4.5 mm (dashed 
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curve), and z = 9 mm (dot-and-dashed curve) at r = 0, which practically coincide with the curves at r ---- 5 
and 10 mm. Allowance for friction disturbs the uniformity only in a narrow zone adjacent to the boundary 
of contact of the soil with the casing. Passage of the pulses through the soil layer and repeated reflections 
from the ends of the rods leads to a nonuniform distribution of the parameters.  In this case, it is possible to 
speak only of the average pressure, which varies with time. 

Figure 4 shows experimental (solid) and calculated (dashed) curves of az_-(t) for the reflected pulse 
recorded by the gauge 2 (Fig. 4a) and the transmitted pulse recorded by the gauge 5 (Fig. 4b) and the 
hoop strain of the casing r recorded by the gauge 3 (Fig. 4c). The  t ime on the curves is measured 
from the moment the disturbances arrive at the gauges. For comparison with the reflected pulse in Fig. 
4a, the dot-and-dashed curve shows the decaying pulse (inverted and displaced in time). Generally, there is 
satisfactory agreement between the numerical and experimental curves. To estimate the effect of the friction 
forces, we performed calculations with a friction coefficient equal to zero, which corresponds to ideal slip 
of the soil relative to the casing and the ends of the rods. The results obtained (dot-and-dashed curves in 

Fig. 4b and c) indicate that  the friction forces have a minor effect on the reflected and transmitted pulses 
and the hoop strain in the casing, although the hoop-strain gradient along the length of the casing increases. 
The compliance of the casing also has an insignificant effect on the wave processes in the soil, as follows from 
a comparison with the solution of the problem for an absolutely rigid casing. 

To determine the dynamic strength properties of the soil, it is necessary to determine the lateral load 
from the side of the soil, which is characterized by the stress component ~ee(t), from the hoop strain ~rrr(~) 
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recorded in the casing. To do this, we use the well-known analytic solution for the stress-strain state of a 
segment of a thick-walled tube  under the action of constant internal pressure. The hoop and radial stresses 
in a tube with inside diameter  a and outside diameter  b under the action of internal pressure q are given by 
the formulas [11] 

ace = A - B / r  2, O'rr = A + B / r  2, 

where A = q a 2 / ( a  2 - b 2) and B = - q a 2 b 2 / ( a  2 - b2). Thus, on the external surface of the segment of the 

tube, we have 
,) 

O -  

aTr = a z :  = 0, gee = 2q b2 _ a2. (7) 

The hoop strain on the surface of the tube  is determined from Hooke's law taking into account (7): 

1 2q a 2 
~ee = ~ ace  = E ~2 _ a2" (8) 

Using relation (8) and the hoop strain on the surface of the casing from the experiment of [3], we can 

calculate the acting internal pressure q: 

E b 2 - a 2 
q -  2 a2 ~eo. (9) 

In the experiment, the role of the internal pressure q is played by the stress c~T~ in the soil, and hence, it 
is possible to obtain the lateral-pressure coefficient Ix'a = a r r / a z z .  For stresses between 0 and 50 MPa, the 
average value of h'~ is 0.5, Poisson's constant is ~ = /x '~ / (1  + h'~) = 1/3, and the average value of the bulk 
compression modulus is K = poc2(p)  = p o d f l ( p ) / d p  = 160 MPa. The  shear modulus G can be determined 
from the elastic formula G = 3K(1 - 2~)/(2(1 + v ) )  = 3 K / 8  = 60 MPa. In the experiment, the load was 
applied not on the entire surface of the casing since segments 3 mm long on each side were used to align 
the casing with the measurement rods and they do not contact the soil. To validate formulas (8) and (9), 
we performed model calculations to determine the stress-strain state  of a casing of length L = 15 mm with 
an inside radius of 10 mm and an outside radius of 21 mm under internal load q in the form of a triangular 
pulse with a length of 100 #sec and a maximum ampli tude of 35 MPa, which simulated the real action. In 
the calculations, we varied the dimension of the region of application of the load l, which coincided with the 
length of the casing L in the first case and with the length of the sample, equal to 9 mm, in the second case. 
Results of the test calculation are given in Fig. 5. The  solid curve shows the exact solution by formula (7), 
and the dashed and dot-and-dashed curves show calculations using the program package "Dynamics-2" [7] 
for l - 15 and 9 mm, respectively. It can be seen that  the maximum values differ greatly and their difference 

is proportional to L / l .  Thus, to correctly use relations (7) and (9), which define the relation between the 
hoop strain on the surface of the casing and the soil pressure a ~ ,  it is necessary to take into account the 

difference in lengths between the casing and the soil sample. 
In addition, we performed a numerical analysis of the propagation of a compression pulse in a system 

of Hopkinson split rods in the formulation corresponding to the experiment (see Fig. 1), where the length of 
the casing was 1.7 times greater than the dimension of the soil sample. Ignoring the difference in dimensions 
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between the casing and the sample soil in determining I(a, we obtain a value of about 0.5 for the lateral- 
pressure coefficient in the range of stresses of 0-50 MPa. To satisfy this condition, we use rather larger 
initial Y0 and maximum Y. yield strengths in (6) (40 and 60 MPa, respectively) and G = 60 MPa. In the 
calculations, the coefficient I{~ varied from 0.45 to 0.55, and the hoop strain in the casing was 1.5-2 times 
smaller than the experimental value. In formula (6), setting Y0 = 0.1 MPa, Y. = 5 MPa, and G = 5 MPa, 
we obtain I(~ ~ 1. Calculation results for K~ close to unity are given in Figs. 3 and 4 and agree well with 
the experimental data. 

Thus, to determine the lateral pressure in the soil sample from the hoop strain on the external surface 
of the casing, it is possible to use formula (9). In this case, the lateral pressure should be calculated taking 
into account the difference in the dimension of the casing and the sample of soil. To satisfy the condition of 
a uniibrm stress-strain state in the soil sample and the casing, it is necessary that the length of the casing 
be no more than twice the dimension of the cylindrical soil sample (1 ~< L/l  <~ 2). If the longitudinal strain 
in the soil is more than 10%. it is necessary to take into account the change in the loaded part of the casing 
due to a decrease in the distance between the ends of the measurement rods. 

The paper was performed within the framework of the pro~am for supporting the leading scientific 
schools of Russia (Grant No. 96-15-98156) and the Basic Research Program in the Field of Mining Sci- 
ences of the Ministry of Education of the Russian Federation and supported by the Russian Foundation for 
Fundamental Research (Grant Nos. 97-01-00605 and 99-01-00132). 
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